Challenges of the movement of catalytic micromotors in blood.
نویسندگان
چکیده
Catalytic microjet bubble-propelled engines have attracted a large amount of interest for their potential applications in biomedicine, environmental sciences and natural resources discovery. One of the current efforts in this field is focused on the search of biocompatible fuels. However, only a minimal amount of effort has been made to assess the challenges facing the movement of such devices in a real world environment, especially with regards to the components of blood and their interactions with the catalytic microjets. Herein, we will show the limitations on the movement of catalytic microengines prepared via the rolled-up, as well as the templated-electrochemical deposition method, in an artificial blood sample, due to the presence of two main components of animal blood: the cellular component (red blood cells in this study) and serum. We will show that the motion of catalytic microjets is only possible in highly diluted dispersions of the red blood cells and serum. This finding has a profound implication on the development of the whole field, where the components found in real environments have to be considered carefully, and issues arising from the presence of such components have to be resolved prior to deploying these devices in real world applications.
منابع مشابه
Visible-light controlled catalytic Cu2O-Au micromotors.
Visible light driven Cu2O-Au micromotors exhibit rapid on/off switching and speed control. Electrochemical measurements confirm that the light-induced movement of the Cu2O-Au micromotors involves a self-electrophoresis mechanism modulated by the photoconductivity of Cu2O. This study extends the utilization of the electromagnetic spectrum for micro/nanomotors into the visible range.
متن کاملVapor-Driven Propulsion of Catalytic Micromotors
Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct additi...
متن کاملInfluence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors
Bubble-propelled catalytic micromotors have recently been attracting much attention. A bubble-propulsion mechanism has the advantage of producing a stronger force and higher speed than other mechanisms for catalytic micromotors, but the nature of the fluctuated bubble generation process affects the motions of the micromotors, making it difficult to control their motions. Thus, understanding of ...
متن کاملUnderstanding the efficiency of autonomous nano- and microscale motors.
We analyze the power conversion efficiency of different classes of autonomous nano- and micromotors. For bimetallic catalytic motors that operate by a self-electrophoretic mechanism, there are four stages of energy loss, and together they result in a power conversion efficiency on the order of 10(-9). The results of finite element modeling agree well with experimental measurements of the effici...
متن کاملHydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013